If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-25x^2+169=0
a = -25; b = 0; c = +169;
Δ = b2-4ac
Δ = 02-4·(-25)·169
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-130}{2*-25}=\frac{-130}{-50} =2+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+130}{2*-25}=\frac{130}{-50} =-2+3/5 $
| 3x+37+8x-17=180 | | 4t=6-2t | | 3a10=4+a | | 800+350=x | | 8x^2+8x-1728=0 | | 6n+13=5 | | 1000(6x-10)=40(315+100x) | | -9x-8-+5x=28 | | 0.66s-1.66=s/6+0.33 | | 4x-31=3x+8 | | 28z(z-1)=30z | | 5y-14=26y= | | 2(3x+1)=4x-10 | | 20q2+56q+36=0 | | 3=5x+15=2x+16 | | .25(8t+12)=2t | | 4=2x+36=5x-18, | | -5(x+6)+8x=3 | | 9(x-4)-7x=32-2(x+18) | | 5y-3y+3=11 | | 14^x+3^x-40=11 | | -3w+-9w+-17=7 | | 4(x-2)=3(x+8) | | X+1/4=1/6-2-x/3 | | 4x+4=8+2x+20 | | 14^x+3^x=51 | | j-14/2=2 | | 16m2–(6)(-2)(-5)=4 | | 4g+-18+15g=1-g | | -10c+13c=-18 | | 8y^2+40y=48 | | (1/5)(4z-10)=(4/5)z-2 |